Industry News


Our news page will keep you informed of press releases and news articles on rapid and alternative microbiological method technologies and updates from technology suppliers.


Please click here to submit your news.

ICMR to Commercialise Novel Primers for PCR-RFLP Assay to Identify Species-Specific Pathogenic Mycobacteria

The Indian Council of Medical Research (ICMR) will soon commercialise its newly developed technology on Novel Primers for a PCR-RFLP assay for accurate identification of pathogenic mycobacteria at species level by gene amplification analysis which is very important for tuberculosis (TB) management in the country.

For this purpose, the ICMR, premier medical research organisation in the country, has invited proposals from the companies interested in commercialising the technology which has received an Indian Patent (No. 242073).

Senior officials in the ICMR said that there are several salient features to this technology which accurately identifies pathogenic mycobacteria by gene amplification analysis. The assay has been validated on reference strains as well as on Indian clinical and environmental isolates from different places of country deposited in the National Repository for Mycobacteria at the ICMR Institute.

It is used to differentiate pathogenic mycobacteria from non-pathogenic strains and it is used to differentiate pathogenic mycobacterial isolates at species level also. This assay allows better and easier differentiation on gels since the fragments generated from amplicons by this assay are bigger, which can be easily separated and analysed. Both slow growing and rapid growing mycobacteria could be well differentiated by using this technology.

Gene amplification of the 16S - 23S rRNA gene region is an in-house designed mycobacterial specific oligonucleotides primer(s) with optimized PCR conditions which yield a single fragment of approx 1.8 kb. Restriction analysis of 1.8 kb fragment by using the selected endonucleases Hha I, Hinf I and Rsa I yielded fragments of various lengths for different pathogenic disease causing species. Results indicated that this system is a simple, rapid and reproducible method to identify clinically relevant disease causing mycobacteria.

It is cost - effective and rapid method and found to be robust. The technology has been developed at laboratory scale. It can differentiate M. tuberculosis from M. avium, M. intracellulare, M. fortuitum, M. chelonae complex, M. terrae, M. vaccae, M. kansasi, M. flavescense, M. mrinum.

Officials said that the present technology relates to the rapid identification of the Pathogenic mycobacteria. More particularly, it relates to the development of new primers and a rapid method to identify the mycobacterial isolates at species level by gene amplification restriction analysis using primers encoding 16S-23S rDNA spacer region and flanking parts of the 16S as well as 23S rDNA.

Post a Comment

Previous Post Next Post

Contact Form