Wednesday, October 16, 2019

Pittsburgh Research Team Uses Rapid Diagnosis Technology to Tackle HIV Testing Problems

As associate medical director of clinical immunopathology at the University of Pittsburgh Medical Center, Sarah Wheeler has received many calls from clinicians about diagnostic testing in the hospital, including those dealing with human immunodeficiency virus.

However, one call made her realize the limits of modern medical technology.

“We received a call from (UPMC) Magee–Womens Hospital that a woman was in active labor with no prior medical history and no baseline infectious disease testing, and we didn’t have any tests that could provide us an accurate result for her HIV status that could be done rapidly,” said Wheeler, who is also an assistant professor of pathology at Pitt.

This isn’t an uncommon scenario, but it was the event that led to Wheeler and other Pitt researchers taking action. She, along with Michael Shurin, a fellow professor of pathology, and Alexander Star, professor of chemistry at Pitt, are creating a testing device that will be able to determine in one minute whether a patient is infected with HIV. Currently, early HIV screening takes 1,440 minutes — an entire day.

Michael Shurin, professor of pathology, is part of the team that created the HIV Detective, a device for giving a rapid diagnosis for HIV infection.
“We thought, ‘We should be able to do something better,’” Shurin said.

Shurin’s tenure in the clinical laboratory took him through the earliest tests for HIV, and he has seen the progress to date in these tests as helpful, but inadequate for the clinical situations he now faces as division director of clinical immunopathology. Building on his decade-long collaboration in cancer research with Star, Shurin started pulling together a team to tackle this problem.

The HIV Detective is the team’s solution to the need for early and rapid diagnosis of HIV. It is a testing platform that would fit in the palm of a hand and allows health care workers to gather a few drops of blood from a patient onto a sensor smaller than Roosevelt’s ear on the dime and provides an HIV screening result in one minute.

This leap forward in testing is possible due to another recent project from the Star laboratory, a working THC breath test.

The THC-detection technology hinges on carbon nanotubes, tiny tubes of carbon 100,000 times smaller than a human hair, which are capable of conducting electricity and monitoring molecular interactions.

“Think of it like wires connected to molecules,” said Star. “The detection is really fast.”

Using the same technology in the HIV Detective means the team members don’t have to wait for the lengthy and insensitive chemical reactions currently used in testing; they can get real-time results from HIV antigen-antibody binding. This allows for a fast and accurate test, as Star’s team has demonstrated with their successful breathalyzer test that also helps in diagnosing and monitoring Type 1 diabetes in patients.

The technology also would allow the team to make the HIV Detective device cost-efficient, which could benefit HIV patients in other countries who cannot afford access to testing. About 34 million people worldwide have the virus.

Patients are most infectious when they first contract HIV, but current rapid tests do not detect HIV in this acute stage — about two to four weeks in. According to the Centers for Disease Control and Prevention, of the 1.1 million people who have HIV in the U.S., about 20% remain unaware they have the virus during this stage because they show no symptoms.

It was this message that helped the HIV Detective team win a $100,000 grand prize from the 2019 Pitt Innovation Challenge (PInCh), hosted by Pitt’s Clinical and Translational Science Institute (CTSI). The prize money will enable the team to create a prototype and use it for clinical trials.

“Our ultimate goal is approval from the Food and Drug Administration, so it can be used across the country,” Wheeler said.

“The PInCh competition provides the opportunity for University teams to identify important medical and public health problems and address those problems with unique solutions,” said CTSI director Steven Reis, who also is associate vice chancellor for clinical research and health sciences, and a professor of medicine at Pitt. “This year’s winners — including HIV Detective — proved, once again, that through creative thinking by diverse research teams, discoveries can be applied to address real world health challenges.”

FDA Allows Marketing of First Rapid Diagnostic Test for Detecting Ebola Virus Antigens

The U.S. Food and Drug Administration allowed marketing of a rapid diagnostic test (RDT) to detect Ebola virus antigens (proteins) in human blood from certain living individuals and samples from certain recently deceased individuals suspected to have died from Ebola (cadaveric oral fluid). The OraQuick Ebola Rapid Antigen Test is the first rapid diagnostic test the FDA has allowed to be marketed in the U.S. for the Ebola Virus Disease (EVD). The test provides a rapid, presumptive diagnosis that must be confirmed.

“Today’s marketing authorization provides another important tool in the effort to fight Ebola, which continues to be a priority of the U.S. Government, especially as we work with our partners, including the World Health Organization, to help address the current Ebola outbreak in the Democratic Republic of Congo (DRC),” said Acting FDA Commissioner Ned Sharpless, M.D. “The current outbreak in the DRC has already killed thousands and the outbreaks in West Africa that began in 2014 tragically killed more than 11,000. Investigational vaccines and therapeutics have shown promising results, but one of the most important tools in stopping these outbreaks is quickly diagnosing patients and supporting safe and dignified burials. This marketing authorization may provide additional assurances to health care professionals seeking to use these types of rapid diagnostics. The ability to use this test to promptly make a presumptive Ebola diagnosis could help providers to more quickly isolate patients and begin treatments that can be potentially life-saving. Additionally, this device could be used to support safe and dignified burials while helping to reduce the risk of transmission during those burials.”

EVD, which is caused by the Ebola virus, is a severe, often fatal disease in humans that can spread through direct contact with blood or body fluids or objects contaminated with body fluids, as well as from the bodies of those who have died from the virus. EVD has led to several large outbreaks in Africa, including the West African Ebola epidemic that began in 2014 and was the largest outbreak of EVD in recorded history, and the ongoing outbreak in the DRC, which is currently the second largest outbreak. Extensive efforts are underway by the Ministry of Health in the DRC to contain the current outbreak with support from the World Health Organization, the U.S. government, and other partners. These measures include campaigns to promote good hygiene, large-scale vaccination campaigns, specialized Ebola treatment centers where those infected or exposed to the virus can receive investigational therapeutics, and comprehensive efforts to trace and prevent the spread of EVD through vaccination campaigns, monitoring for symptoms, diagnostic testing, and implementation of infection prevention and control measures, such as safe and dignified burial procedures.

During the 2014 outbreak, the Secretary of the Department of Health and Human Services declared that circumstances exist justifying the authorization of emergency use of in vitro diagnostics for detection of Ebola virus. At the time, the FDA worked with CDC and test developers to make diagnostic tests, including the OraQuick Ebola Test, available through the Emergency Use Authorization (EUA) pathway. This pathway allows the FDA to temporarily authorize the use of unapproved medical products to address a public health emergency when specific conditions are met, including that there are no adequate, approved and available alternatives to the product for diagnosing, preventing, or treating the disease or condition. The FDA has authorized a number of diagnostic tests for EVD under the EUA pathway to assist with the public health response. Today’s marketing authorization of the first EVD presumptive rapid diagnostic test for Ebola virus antigens through the De Novo review pathway reflects the ongoing collaboration between the U.S. Government and test developers to gather additional data on EUA products.

For the OraQuick Ebola Test submission, the FDA reviewed data from multiple clinical studies of blood samples and cadaveric oral fluid from the 2014 West African outbreak and from a variety of analytical studies. Based on these data, the FDA determined that general and special controls were necessary to provide a reasonable assurance of the safety and effectiveness of the OraQuick Ebola Test when intended to identify antigens associated with Ebola virus in blood from symptomatic patients and oral fluid of cadavers. The amount of Ebola virus when patients have severe symptoms of EVD is usually high; however, the amount of virus in samples taken early after infection when symptoms are not present yet or taken early during the course of EVD when symptoms are mild can be very low. The studies demonstrated the importance of testing only symptomatic individuals so that the amount of virus is high enough to be detectable by this test. Therefore, the OraQuick Ebola Test is intended for use in patients suspected of and with signs or symptoms consistent with EVD, and when the patient meets the CDC’s Ebola virus epidemiological criteria, such as history of residence in or travel to a geographic region with active EVD transmission at the time of travel. The OraQuick Ebola Test is not intended to be used for general Ebola infection screening (e.g., airport screening) or testing of individuals at risk of exposure without observable signs of infection.

The OraQuick Ebola Test may also be used in recently deceased individuals (cadaveric oral fluid) with epidemiological risk factors (including geographic locations with high prevalence of EVD) suspected to have died of EVD to inform decisions on safe handling of cadavers to prevent disease transmission.

Negative results do not rule out Ebola virus infection. The definitive identification of EVD requires additional testing and confirmation procedures (such as by a more sensitive but less rapid polymerase chain reaction test) and in consultation with public health and/or other authorities to whom reporting is required.

The OraQuick Ebola Test was reviewed under the De Novo premarket review pathway, a regulatory pathway for low-to-moderate-risk devices of a new type. Along with this marketing authorization, the FDA is establishing criteria, called special controls, that determine the requirements for demonstrating accuracy, reliability and effectiveness of tests intended to identify Ebola virus antigens. These special controls, when met along with general controls, provide a reasonable assurance of safety and effectiveness for tests of this type. This action also creates a new regulatory classification, which means that subsequent devices of the same type with the same intended use may go through the FDA’s 510(k) pathway, whereby devices can obtain clearance by demonstrating substantial equivalence to a predicate device.

The OraQuick Ebola Test was granted Breakthrough Device designation, meaning the FDA provided intensive interaction and guidance to the company on efficient device development, to expedite evidence generation and the agency’s review of the device. To qualify for such designation, a device must provide for more effective treatment or diagnosis of a life-threatening or irreversibly debilitating disease or condition, and meet one of the following criteria: the device must represent a breakthrough technology; there must be no approved or cleared alternatives; the device must offer significant advantages over existing approved or cleared alternatives; or the availability of the device is in the best interest of patients.

The FDA granted marketing authorization of the OraQuick Ebola Test to OraSure Technologies, Inc.

Microfluidic Device for Rapid Lyme Disease Diagnosis

Researchers at Columbia University have developed a microfluidic device that can diagnose Lyme disease in as little as 15 minutes. The device is particularly accurate in identifying antibody biomarkers that are present during early stage Lyme disease, raising hopes that it could be useful in detecting cases of early infection in a doctor’s office, leading to timely treatment.

Lyme disease, which is spread by infected ticks, is incredibly common. Approximately 300,000 Americans are diagnosed with the disease each year, and if left untreated it can result in serious neurological and cardiac symptoms. The disease is difficult to spot, as many of the early symptoms are similar to those found with other conditions.

Diagnosing and treating the disease early is important in achieving good patient outcomes, but the current diagnostic tests require both an ELISA and a western blot, which are cumbersome, take a while to perform, and require trained laboratory specialists. Moreover, the accuracy of these tests in identifying early cases of Lyme disease is quite poor.

Zoomed photo of fluid moving through a small channel in the new microfluidic chip.
To address these issues, the Columbia researchers developed a point-of-care microfluidic test for Lyme disease, which a doctor could use in their office, and which can provide a diagnosis within just 15 minutes.

“Our findings are the first to demonstrate that Lyme disease diagnosis can be carried out in a microfluidic format that can provide rapid quantitative results,” said Sam Sia, a researcher involved in the study. “This means that our test could easily be used directly in a doctor’s office, obviating having to send the samples out to a laboratory that needs at least a couple of hours, if not days, to get test results.”

The new assay detects three biomarkers of Lyme disease in patient samples, and demonstrates greater sensitivity than traditional Lyme detection assays. Excitingly, the device also appears to be better at detecting early stage Lyme disease and can detect antibodies that are present in the blood in the first few weeks after someone contracts Lyme disease.

“While the assay will require more refinement and testing before it can be approved for widespread use as a test for Lyme disease, our results are very exciting,” said Siddarth Arumugam, another researcher involved in the study. “It will help so many people if we can develop a single, rapid, multiplexed diagnostic test to identify Lyme disease stage that can be used in doctors’ offices.”

Reference: A Multiplexed Serologic Test for Diagnosis of Lyme Disease for Point-of-Care Use

Wednesday, August 07, 2019

Researchers Use Electrical Signalling to Detect Bacteria

Researchers at the University of Warwick have found bacteria can be detected in minutes by zapping them with electricity.

Scientists at the university in the United Kingdom discovered healthy bacteria cells and those inhibited by antibiotics or UV light show different electric reactions. When zapped with an electrical field, live bacteria absorb dye molecules causing the cells to light up so they can be counted. Bacillus subtilis and E. coli were used as model organisms.

Testing commercial products for bacterial contamination can take days. During this time, they can cause significant numbers of illnesses and infections can become life threatening if not identified and treated appropriately.

The researchers’ findings, published in Proceedings of the National Academy of Sciences of the United States of America, could lead to development of medical devices that can rapidly detect live bacterial cells, evaluate the effects of antibiotics on growing bacteria colonies, or identify different types of bacteria and reveal antibiotic-resistant bacteria. One target is quality control in the water, pharmaceutical, food, and beverage industries.

James Stratford, from the School of Life Sciences and spinout company Cytecom, said “the system we have created can produce results which are similar to the plate counts used in medical and industrial testing but about 20 times faster. This could save many people’s lives and also benefit the economy by detecting contamination in manufacturing processes.”

Scientists showed bioelectrical signals from bacteria can be used to determine if they are alive or dead. The approach uses membrane-potential dynamics and electrical stimulation to differentiate between incapacitated and viable cells.

The team developed an experimental tool to study the relation of bacterial electrical signaling. Using it combined with time-lapse microscopy, they showed live and inhibited cells respond to electrical stimulation in opposite directions. A 2.5-second electrical stimulation caused hyperpolarization in unperturbed cells while inducing depolarization in inhibited cells.

Findings offer an approach for rapid detection of proliferative bacteria without observation of actual proliferation or time-consuming calibrations for bacterial species. It can detect proliferative cells within a minute after electrical stimulation.

Researchers founded a start-up company called Cytecom. The firm has been awarded a grant from Innovate UK, a national funding agency, which means devices could be available to researchers and businesses shortly.

The team combined biological experiments, engineering and mathematical modelling.

“This work demonstrates that bacterial electricity can lead to societally important technology, while at the same time gaining fundamental insights into our basic understanding of cells. The tool we developed can offer more opportunities by allowing experiments which were not possible to perform before,” said Munehiro Asally, assistant professor at the University of Warwick.

NC State Developing New Technology that will Help Farmers Detect Plant Pathogens

The fresh food in your grocery stores could eventually get cheaper thanks in part to new technology being developed at NC State that’ll help farmers protect their crops better and apply just the right amount of chemicals to prevent disease.

When a crop gets diseased, it can spread really quickly in a field, so it’s essential for farmers to detect problems fast.

But, traditional methods of disease detection can take weeks. Now a team of NC State researchers have come up with something that’s much quicker and portable.

The device literally smells disease.

Currently, it’s being tested in a lab run by assistant professor Qingshan Wei of the Emerging Plant Disease & Global Food Security Cluster at NC State.

They’ve detailed their results in a paper published by the Journal Nature.

Here’s how it works in laymen’s terms.

When a plant is diseased, it will actually give off gasses.

To test their proof of concept, Wei’s team puts part of a tomato plant leaf in a sealed glass tube.

The wait about 15 minutes as the air in the sealed vial becomes saturated with volatiles from the plant.

Once enough gas is collected, a device attached to the back of a cell phone is used to suck the air from the vial into a chamber where it’s analyzed.

The gas reacts with a tiny paper strip that’s coated with chemical dots.

The dots change color based on the disease affecting the plant.

The cell phone user then takes a magnified picture of the strip to be used by them as a reference on what chemical treatments need to be applied to the crops to stop the spread of disease.

“You want to know if it’s a bacterial infection or a fungal infection or other type of infection and guide your treatment steps,” said Wei.

Right now, the sniffer device only works on potato leaves and tomato leaves, but Wei’s team is developing sensors which will work with other crops.

The idea for the sensor was built on previous discoveries by other researchers who found out diseased plants gave off certain gasses.

“The leaf is breathing,” said Wei. “It’s exchanging molecules with the air.”

Right now, a farmers only options for figuring out what’s plaguing a crop is either guesswork or sending a sample to as clinical lab where it can take weeks to figure out the pathogen affecting the plants.

By the time the results are sent back to the farmer, the disease could have ruined an entire field of crops.

Once this lab porotype is fully developed, farmers will be able to use it in their fields to get instant results and can minimize the amount of chemical they apply.

“You want to have a rapid decision if you want to apply a fungicide or not,” said Wei.

Deciding how much and what chemical to apply is important because the less that’s applied is better for the environment.

And, saving a crop early will end up keeping prices lower because farmers won’t lose as much in the field.

Actual use of the sniffer is still about a year or so away because as it still needs a little more testing.

Mesa Biotech to Present Comparative Flu & RSV Detection Analysis with Other FDA-Cleared Molecular Assays at AACC

Mesa Biotech Inc. is a privately-held, molecular diagnostic company that has developed the Accula™ System, an affordable, sample-to-answer, CLIA-waived PCR (polymerase chain reaction) testing platform designed specifically for point-of-care (POC) infectious disease diagnosis. Today, Mesa Biotech announced it will present performance comparisons of its visually read PCR testing platform with other FDA-cleared molecular tests for influenza A/B and respiratory syncytial virus (RSV) assays. The lecture will take place on August 6, 2019 at 1:00 pm in theater 3 of the exhibit hall at the 71st American Association of Clinical Chemistry (AACC) Annual Meeting and Clinical Lab Expo in Anaheim, CA. Additionally, the Accula System's RSV and Flu A/Flu B molecular tests will be on exhibit in Booth 3902 at AACC.

"Antiviral drug treatments are becoming increasingly popular and more widely used. The antivirals work best when taken within 48 hours of symptom onset, therefore highly accurate, POC testing is crucial for healthcare professionals to achieve rapid and accurate confirmation of the infection to enable the best patient outcome," said Hong Cai, Co-founder and Chief Executive Officer, Mesa Biotech, Inc.

Stephen Young, PH.D., Director of Research and Clinical Trials at TriCore Reference Laboratory will present the session titled 'Sample-to-answer, CLIA-waived PCR System with Visually Read Results for POC: Comparative Flu and RSV Detection Analysis with Other FDA-cleared Molecular POC Assays'. The presentation will provide a technology overview and performance characteristics of the visually interpreted, CLIA-waived Accula System that possesses the simplicity, convenience and procedural familiarity of traditional POC rapid immunoassays. Additionally, Dr. Young will provide insight on the user experience with the Accula System.

About Mesa Biotech Inc.

Mesa Biotech designs, develops, manufactures and commercializes next generation molecular diagnostic tests, bringing the superior diagnostic performance of nucleic acid PCR amplification to the point-of-care (POC). Mesa Biotech's Accula™ System consists of a portable, palm-sized dock and single-use, assay-specific test cassettes. This patented system enables healthcare professionals to access actionable, laboratory-quality results at the POC with greater sensitivity and specificity than current infectious disease rapid immunoassay tests. The Accula Flu A/Flu B and the Accula RSV tests have obtained CE Mark in the EU and 510(k) clearance and Clinical Laboratory Improvements Amendments (CLIA) waiver from the U.S. Food and Drug Administration (FDA). Both products are distributed in the US by Sekisui Diagnostics under the Silaris™ brand. Mesa Biotech has also secured a number of strategic agreements for distribution in Europe and Asia.

Using Quantum Dots and a Smartphone to Rapidly Detect Bacterial Pathogens

A combination of off-the-shelf quantum dot nanotechnology and a smartphone camera soon could allow doctors to identify antibiotic-resistant bacteria in just 40 minutes, potentially saving patient lives.

Staphylococcus aureus (golden staph), is a common form of bacterium that causes serious and sometimes fatal conditions such as pneumonia and heart valve infections. Of particular concern is a strain that does not respond to methicillin, the antibiotic of first resort, and is known as methicillin-resistant S. aureus, or MRSA.

Recent reports estimate that 700,000 deaths globally could be attributed to antimicrobial resistance, such as methicillin-resistance. Rapid identification of MRSA is essential for effective treatment, but current methods make it a challenging process, even within well-equipped hospitals.

Soon, however, that may change, using nothing except existing technology.

Researchers from Macquarie University and the University of New South Wales, both in Australia, have demonstrated a proof-of-concept device that uses bacterial DNA to identify the presence of Staphylococcus aureus positively in a patient sample -- and to determine if it will respond to frontline antibiotics.

In a paper published in the international peer-reviewed journal Sensors and Actuators B: Chemical the Macquarie University team of Dr Vinoth Kumar Rajendran, Professor Peter Bergquist and Associate Professor Anwar Sunna with Dr Padmavathy Bakthavathsalam (UNSW) reveal a new way to confirm the presence of the bacterium, using a mobile phone and some ultra-tiny semiconductor particles known as quantum dots.

"Our team is using Synthetic Biology and NanoBiotechnology to address biomedical challenges. Rapid and simple ways of identifying the cause of infections and starting appropriate treatments are critical for treating patients effectively," says Associate Professor Anwar Sunna, head of the Sunna Lab at Macquarie University.

"This is true in routine clinical situations, but also in the emerging field of personalised medicine."

The researchers' approach identifies the specific strain of golden staph by using a method called convective polymerase chain reaction (or cPCR). This is a derivative of a widely -employed technique in which a small segment of DNA is copied thousands of times, creating multiple samples suitable for testing.

Vinoth Kumar and colleagues then subject the DNA copies to a process known as lateral flow immunoassay -- a paper-based diagnostic tool used to confirm the presence or absence of a target biomarker. The researchers use probes fitted with quantum dots to detect two unique genes, that confirms the presence of methicillin resistance in golden staph

A chemical added at the PCR stage to the DNA tested makes the sample fluoresce when the genes are detected by the quantum dots -- a reaction that can be captured easily using the camera on a mobile phone.

The result is a simple and rapid method of detecting the presence of the bacterium, while simultaneously ruling first-line treatment in or out.

Although currently at proof-of-concept stage, the researchers say their system which is powered by a simple battery is suitable for rapid detection in different settings.

"We can see this being used easily not only in hospitals, but also in GP clinics and at patient bedsides," says lead author, Macquarie's Vinoth Kumar Rajendran.

Reference:

Vinoth Kumar Rajendran, Padmavathy Bakthavathsalam, Peter L. Bergquist, Anwar Sunna. Smartphone detection of antibiotic resistance using convective PCR and a lateral flow assay. Sensors and Actuators B: Chemical, 2019; 298: 126849

IIT Guwahati Researchers Develop Tri-Layer Dielectric Organic Field Effect Transistor to Rapidly Detect Bacteria

Indian Institute of Technology Guwahati Researchers have developed a low-cost, hand-held device to detect bacteria. This Research by IIT Guwahati will enable rapid detection of bacteria, which is important not only in healthcare, but also in anti-bioterrorism measures and environmental monitoring applications.

Bacterial infection is a common cause of morbidity and mortality worldwide and despite development of a range of antibiotics, the challenge continues to lie in detecting and diagnosing bacterial infection early on, as present detection techniques tend to be time-consuming.

The research team led by Prof Parameswar K Iyer, Department of Chemistry, and Prof Siddhartha S Ghosh, Department of Biosciences and Bioengineering, IIT Guwahati, has developed this novel, low-cost, bio-compatible sensor that can detect bacteria almost instantaneously without the need for cell culture and microbiological assays. The Organic Field Effect Transistor (OFET)-based bacterial diagnostic device has been shown to have the ability to detect 103 cfu mL-1 of bacteria and distinguish between Gram positive and Gram negative types.

Their work has been patented as well as published in the July 2019 issue of the reputed peer-reviewed Journal of Materials Chemistry A of the Royal Society of Chemistry.

At present, the detection of bacteria in body fluids is done in laboratories. The cells that are derived from the patient are initially cultured or grown so that enough of the bacterial cells are available for microbiological analysis.

Explaining the need to develop faster and easier methods to detect bacteria, Prof. Iyer says, “Current diagnostic processes are frustratingly time-consuming, especially when time is of the essence in administering treatment.” While newly developed techniques such as real time qPCR can detect bacteria faster than conventional assay-based methods, they are restricted by the need for expensive apparatuses and trained personnel. What would be useful are hand-held rapid detection kits like those used for blood sugar monitoring and pregnancy detection.”

The IIT Guwahati team consisting of Dr Anamika Dey, Dr Ashish Singh, Dr Deepanjalee Dutta (all three former PhD scholars from Center for Nanotechnology, IITG), Prof Siddhartha Sankar Ghosh and Prof Parameswar Krishnan Iyer, brings portable bacterial detection kits closer to reality. The sensor detects the charges on the cell walls of bacteria.

Highlighting the functionality of the device, Prof Ghosh said, “It is known that Gram positive bacteria such as S pneumoniae, have different cell wall compositions than Gram negative bacteria such as the common E coli. Such asymmetric cell wall organisations could alter flow of electrons at the channel of OFETs during their detection”.

The important breakthrough by the team was in developing and using an Organic Field Effect Transistor (OFET) to detect this surface charge. The OFET is an electronic device that works on the principle that charges in the vicinity of the channels of certain semiconductors can induce a current in them. Thus, the charges on the surface of the bacterium, induces a current in the OFET, which is registered and read.

The OFET devices developed by the team consists of a unique and hybrid tri-layer dielectric system built on simple glass and flexible PET (a kind of plastic) substrates, and can operate at ultra-low operating voltages. The team has shown that this OFET sensor can not only detect bacteria, but also differentiate between Gram positive and Gram negative bacteria.

“Not only have we shown the sensing capabilities of this portable OFET device, but we have also shown the mechanism by which sensing occurs and elucidated the role of bacterial wall in distinguishing various bacterial types”, added Prof. Iyer on the significance of this latest interdisciplinary research work.

The OFET-based ready-to-use diagnostic tool will facilitate rapid detection and diagnosis at the point of care. The current device is particularly useful for the detection of bacteria primarily for water-borne diseases. These sensors will also be useful in instantaneous detection of time-critical illnesses such as meningitis.

Wednesday, July 03, 2019

Luminex Submits ARIES MRSA Assay for FDA Clearance

Luminex Corporation announced that the company submitted the ARIES® MRSA Assay to the U.S. Food and Drug Administration (FDA) for clearance on Friday, June 28, 2019. The assay is a real-time, quantitative polymerase chain reaction (qPCR)-based, in vitro diagnostic test for the direct detection of methicillin-resistant Staphylococcus aureus (MRSA) DNA from nasal swabs in patients at risk for nasal colonization.

"This submission demonstrates our continued dedication to expanding the menu of clinically relevant and high-value tests that support patient care throughout the world on our sample to answer platforms," said Homi Shamir, President and CEO of Luminex. "Our VERIGENE® II GI Flex and RSP Flex submissions, as well as the commercialization of our new SENSIPLEX™ instrument, remain on track with our previously communicated timelines."

According to the U.S. Centers for Disease Control and Prevention, in 2016, there was approximately one case of MRSA for every 30 people in the U.S. This works out to around 10 million cases of MRSA in the U.S. each year.1,2 Rapid molecular tests for organisms such as MRSA have the potential to aid physicians in reigning in the spread of antimicrobial resistance and the associated negative outcomes for both patients and healthcare facilities by reducing the unnecessary use of antimicrobial therapies, thus allowing for more effective patient management.

The Luminex ARIES® System is a sample to answer, real-time system designed to increase laboratory efficiency, ensure result accuracy, and fit seamlessly into the modern laboratory. The system already offers six FDA and seven CE-IVD cleared assays, as well as the ability to run laboratory developed tests. "This assay will add another foundational test to the ARIES® System, increasing its value for customers and patients," said Shamir.