Thursday, July 07, 2022

PRESS RELEASE: Cepheid and BioGX Announce Collaboration to Develop Monkeypox PCR Test for the GeneXpert® System

Cepheid and BioGX announced a collaboration between the two companies to deliver a PCR test for Monkeypox that will run on the GeneXpert system. With a global installed base of over 40,000 GeneXpert systems in 180 countries, this test could be deployed quickly in multiple settings where actionable information is needed.

According to the Centers for Disease Control and Prevention (CDC), monkeypox is rare and does not spread easily between people without close contact. While the threat of monkeypox to the general U.S. population remains low (1), it is important for healthcare providers worldwide to have a preparedness plan. One of the key signs of infection with the virus is fever with development of a maculopapular rash, often appearing as small, raised spots. However, there are many other illnesses, such as chickenpox, measles, bacterial skin infections, syphilis, herpes, and medication-associated allergies that can present with similar symptoms. This underscores the need for a molecular test that can identify monkeypox. The World Health Organization recommends PCR as the preferred laboratory test for monkeypox, using an appropriate skin lesion sample (2).

"Our FleXible Cartridge program gives Cepheid the ability to work with external partners to develop accurate tests quickly when the need arises," said David H. Persing, M.D., Ph.D., Cepheid's EVP and Chief Scientific Officer. Beginning with Bacillus anthracis (Anthrax) and continuing with Mycobacterium tuberculosis, Influenza H1N1, Ebola virus and SARS-CoV-2 among others, Cepheid has a long history of quickly developing and delivering tests that address urgent public health issues as they emerge."

BioGX also has a successful track record of working with government agencies and diagnostic partners to quickly develop and manufacture at-scale molecular tests for detection of emerging pathogens.

"We previously collaborated on a project with the CDC to develop and manufacture a multiplex Monkeypox/Orthopoxvirus test for a GeneXpert-based study (3), and now with Cepheid we are moving to the validation stage utilizing the FleXible cartridge," said Michael Vickery, Ph.D., BioGX's EVP and Chief Scientific Officer. "Regional response teams need a PCR test that is fast and easy to implement when they suspect an outbreak due to a novel pathogen."

Product in development. Not for use in diagnostic procedures. Not reviewed by any regulatory body. Product in development is subject to change and specifications have not yet been established.

References:

1. https://www.cdc.gov/poxvirus/monkeypox/index.html

2. https://www.who.int/news-room/fact-sheets/detail/monkeypox

3. Li D., Wilkins K., McCollum A.M., Osadebe L., Kabamba J., Nquete B., Likafi T., Balilo M.P., Lushima R.S., Malekani J., et al. Evaluation of the GeneXpert for human monkeypox diagnosis. Am. J. Trop. Med. Hyg. 2017;96:405–410. doi: 10.4269/ajtmh.16-0567. - DOI  https://www.ajtmh.org/view/journals/tpmd/96/2/article-p405.xml

About Cepheid

Based in Sunnyvale, Calif., Cepheid is a leading molecular diagnostics company. Cepheid is dedicated to improving healthcare by developing, manufacturing, and marketing accurate yet easy-to-use molecular systems and tests. By automating highly complex and time-consuming manual procedures, the company's solutions deliver a better way for institutions of any size to perform sophisticated molecular diagnostic testing for organisms and genetic-based diseases. Through its strong molecular biology capabilities, the company is focusing on those applications where accurate, rapid, and actionable test results are needed most, such as managing infectious diseases and cancer. 

About BioGX

BioGX is a leading global provider of lyophilized real-time PCR reagents for molecular diagnostics. BioGX, Inc., headquartered in Birmingham, Alabama and Dallas, TX, and its wholly owned subsidiary BioGX B.V., based in Amsterdam, The Netherlands, (collectively "BioGX"), operates in a cGMP compliant environment certified to ISO 13485 medical device development and manufacturing standards. The proprietary Sample-Ready™ technology is at the core of all product offerings for Clinical, Food Safety, Pharma QC and Water Quality molecular testing. BioGX's 60+ multiplex real-time PCR products are marketed and sold worldwide through its Global Distribution Network. 

Image credit: US Centers for Disease Control.

PRESS RELEASE: New Antibody Detection Method for Coronavirus That Does Not Require a Blood Sample

Despite significant and stunning advances in vaccine technology, the COVID-19 global pandemic is not over. A key challenge in limiting the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is identifying infected individuals. Now, investigators from Japan have developed a new antibody-based method for the rapid and reliable detection of SARS-CoV-2 that does not require a blood sample.

The ineffective identification of SARS-CoV-2-infected individuals has severely limited the global response to the COVID-19 pandemic, and the high rate of asymptomatic infections (16%–38%) has exacerbated this situation. The predominant detection method to date collects samples by swabbing the nose and throat. However, the application of this method is limited by its long detection time (4–6 hours), high cost, and requirement for specialized equipment and medical personnel, particularly in resource-limited countries.

An alternative and complementary method for the confirmation of COVID-19 infection involves the detection of SARS-CoV-2-specific antibodies. Testing strips based on gold nanoparticles are currently in widespread use for point-of-care testing in many countries. They produce sensitive and reliable results within 10–20 minutes, but they require blood samples collected via a finger prick using a lancing device. This is painful and increases the risk of infection or cross-contamination, and the used kit components present a potential biohazard risk. 

Lead author Leilei Bao from the Institute of Industrial Science, The University of Tokyo, explains: “To develop a minimally invasive detection assay that would avoid these drawbacks, we explored the idea of sampling and testing the interstitial fluid (ISF), which is located in the epidermis and dermis layers of human skin. Although the antibody levels in the ISF are approximately15%–25% of those in blood, it was still feasible that anti-SARS-CoV-2 IgM/IgG antibodies could be detected and that ISF could act as a direct substitute for blood sampling.”

After demonstrating that ISF could be suitable for antibody detection, the researchers developed an innovative approach to both sample and test the ISF. “First, we developed biodegradable porous microneedles made of polylactic acid that draws up the ISF from human skin,” explains Beomjoon Kim, senior author. “Then, we constructed a paper-based immunoassay biosensor for the detection of SARS-CoV-2-specific antibodies.” By integrating these two elements, the researchers created a compact patch capable of on-site detection of the antibodies within 3 minutes (result from in vitro tests).

This novel detection device has great potential for the rapid screening of COVID-19 and many other infectious diseases that is safe and acceptable to patients. It holds promise for use in many countries regardless of their wealth, which is a key aim for the global management of infectious disease. 

The article, “Anti SARS CoV 2 IgM/IgG antibodies detection using a patch sensor containing porous microneedles and a paper based immunoassay,” was published in Scientific Reports.

About Institute of Industrial Science, The University of Tokyo

The Institute of Industrial Science, The University of Tokyo (UTokyo-IIS) is one of the largest university-attached research institutes in Japan. Over 120 research laboratories, each headed by a faculty member, comprise UTokyo-IIS, which has more than 1,200 members (approximately 400 staff and 800 students) actively engaged in education and research. Its activities cover almost all areas of engineering. Since its foundation in 1949, UTokyo-IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Tuesday, June 21, 2022

PRESS RELEASE: MicroGenDX Provides Rapid Screening for Candida Auris to Help Avoid Outbreaks in Healthcare Settings

Candida auris causes serious infections, and cases are rising across the U.S as documented by CDC's tracking map. More than one in three patients die within a month of being diagnosed with a bloodstream or other invasive C. auris infection, and patients in hospitals and nursing homes are particularly susceptible.

MicroGenDX molecular testing overcomes current challenges with detecting C. auris. For example, both standard culture and MALDI-TOF have difficulty identifying this species of fungus, but MicroGenDX DNA analysis specifically targets C. auris using the internal transcribed spacer (ITS) region of its rDNA and is extremely accurate. MicroGenDX testing also facilitates the rapid intervention and precautions needed to prevent outbreaks in healthcare settings by returning results within 24-48 hours. The MicroGenDX test also accepts multiple sample types, including swab, tissue, and urine.

About MicroGenDX

Founded in 2008, MicroGenDX has become the industry leader in rapid turnaround and affordability for comprehensive Next-Generation Sequencing (NGS) and qPCR testing for clinical diagnostics. MicroGenDX is CLIA-licensed and CAP-accredited, and has been the trusted research partner for the CDC, U.S. Army, NASA, and the FDA. MicroGenDX has published over 70 clinical studies and is the most experienced molecular diagnostic laboratory with some 1.5 million samples processed.

References

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694398

https://www.cdc.gov/fungal/candida-auris/identification.html

https://www.cdc.gov/fungal/candida-auris/tracking-c-auris.html

Monday, June 20, 2022

PRESS RELEASE: Spindiag declares CE-conformity for two new Rhonda PCR rapid tests for use at the Point of Care (POC)

Spindiag GmbH, an in-vitro diagnostics Start-up based in Freiburg/Breisgau, Germany, today announced that it has declared CE-IVD conformity for two new tests for its Rhonda PCR rapid testing system. The new Rhonda Respi disk allows the detection of SARS-CoV-2, Influenza A, Influenza B, and the Respiratory Syncytial Virus (RSV) with only one swab sample in well under one hour. A test to detect Methicillin-resistant Staphylococcus aureus (MRSA) was also CE-marked and complements the growing portfolio of the company, which currently commercializes its Rhonda system in Germany and Austria.

Dr. Daniel Mark, CEO and co-founder of Spindiag, said: “Point-of-care testing is becoming increasingly important for infection diagnostics. There is a high medical need for rapid, reliable tests that can be used in hospital emergency rooms to prevent the spread of infectious diseases caused by pathogens that are detected too late. I am very pleased that our Start-up once again demonstrated its innovative strength by launching two new PCR-tests at the same time. With the Respi test, healthcare professionals can now simultaneously detect four viral respiratory pathogens in less than one hour. For example, the SARS-Coronavirus-2 can be differentiated from an Influenza virus and targeted infection control measures can be taken immediately. While COVID-19 has put the focus on viral pathogens, we must not forget that antibiotic-resistant bacteria are a serious challenge for healthcare systems worldwide, as a recent Lancet study showed1. To address this challenge, we have developed our second new test: the Rhonda MRSA test reliably detects the resistant pathogen, and thereby protects vulnerable groups. Rapid and reliable detection can help slow down the spread of antibiotic-resistant bacteria in healthcare systems.“

Although most COVID-19 protection measures were lifted, testing still remains very important in healthcare facilities. Since face masks are not mandatory in public spaces any longer, respiratory pathogens can again spread more easily. Viral respiratory diseases have very similar symptoms and therefore require rapid decision-making at the point of care. The Rhonda Respi test allows this medical need to be met. COVID-19 has also exacerbated the situation for spreading of antibiotic-resistant pathogens, as bacterial co-infections can occur while having COVID-192. Rhonda enables hospital staff to take the right decisions simply and rapidly: the testing system combines speed with the reliability of PCR-testing. Pre-emptive isolation measures can thus be avoided, and vulnerable groups can be effectively protected from possible infections at the same time.

Saturday, May 14, 2022

PRESS RELEASE: First Patent Regarding RPIDD Infectious Disease Liquid Biopsy Technology DNA Library Preparation and Amplification Methods Granted

Aptorum Group Limited, a clinical-stage biopharmaceutical company, is pleased to announce that the US Patent and Trademark Office (“US PTO”) has granted the patent regarding the Rapid Pathogen Infectious Disease Liquid Biopsy Diagnostics (“RPIDD”) regarding the invention of an unbiased and simultaneous amplification method for DNA library preparation (US Patent No : US11,280,028 B1) to A*STAR institution, a Singapore based institution with whom Aptorum has an exclusive licensing agreement of the said technology. The RPIDD technology has been exclusively licensed by Aptorum from A*Star through its subsidiary, Aptorum Innovations Holding Pte Limited.

The RPIDD invention employs a unique method in preparing DNA libraries from samples which contain more than one type of nucleic acids in substantially low amount comparative to non-nucleic acid molecules in the sample within a remarkably shorter turnaround time and substantially more simplified steps compared to conventional methods of preparing DNA library.

Mr. Darren Lui, President and Executive Director of Aptorum Group Limited comments “Through our collaboration partner A*STAR, we are extremely delighted that the USPTO has recognised the uniqueness of our RPIDD technology and hence granted the said patent. The patented RPIDD method is going to revolutionize the traditional first line clinical diagnostics for infectious diseases such as blood culture, PCR (etc), and we are convinced that a rapid molecular liquid biopsy based diagnostics approach for infectious diseases will disrupt the current approaches and hence in due course potentially reduce infected patient’s mortality and morbidity. We are now spearheading the efforts in the ongoing clinical validation and pre-commercialisation preparation of our patented RPIDD.”

About Aptorum’s Rapid Pathogen Identification and Detection Diagnostics Technology (RPIDD)

RPIDD is an innovative liquid biopsy-driven rapid pathogen molecular diagnostics technology. Proprietary technologies are being developed to enrich pathogenic DNA / RNA for analysis through harnessing the power of Next-Generation Sequencing platforms and proprietary artificial intelligence-based software analytics with the goal to rapidly identify and detect any foreign pathogens (virus, bacteria, fungus, parasites) without bias through its genome composition and to identify other unknown pathogens and novel mutated pathogens. RPIDD has been and continues to be validated in human samples and so far, such testing has been able to detect pathogens – ranging from bacteria, fungi and viruses in an unbiased manner. RPIDD is currently under validation in-human.

About Aptorum Group Limited

Aptorum Group Limited (Nasdaq: APM, Euronext Paris: APM) is a clinical stage biopharmaceutical company dedicated to the discovery, development and commercialization of therapeutic assets to treat diseases with unmet medical needs, particularly in oncology (including orphan oncology indications) and infectious diseases. The pipeline of Aptorum is also enriched through (i) the establishment of drug discovery platforms that enable the discovery of new therapeutics assets through, e.g. systematic screening of existing approved drug molecules, and microbiome-based research platform for treatments of metabolic diseases; and (ii) the co-development of a novel molecular-based rapid pathogen identification and detection diagnostics technology with Accelerate Technologies Pte Ltd, commercialization arm of the Singapore’s Agency for Science, Technology and Research.

Engineers Develop Fast and Accurate Covid Sensor

Engineers at Johns Hopkins University, supported in part by the U.S. National Science Foundation, have developed a COVID-19 sensor that addresses the limitations of the two most widely used types of COVID-19 tests: PCR tests that require sample preparation, and the less accurate rapid antigen tests.

The sensor technology, which is not yet available, is almost as sensitive as a PCR test and as convenient as a rapid antigen test. The simple-to-use sensor doesn’t require sample preparation and can be used as disposable chips or on a wide variety of surfaces.

“The technique is as simple as putting a drop of saliva on our device and getting a negative or a positive result,” said Ishan Barman, one of the senior authors of the study. “The key novelty is that this is a label-free technique, which means that no additional chemical modifications like molecular labeling or antibody functionalization are required. The sensor could eventually be used in wearable devices.”

“Label-free optical detection, combined with machine learning, allows us to have a single platform that can test for a wide range of viruses with enhanced sensitivity and selectivity, with a very fast turnaround,” added lead author Debadrita Paria.

“Using state-of-the-art nanoimprint fabrication and transfer printing, we have realized highly precise, tunable and scalable nanomanufacturing of both rigid and flexible COVID sensor substrates, important for future implementation, not just on chip-based biosensors but also wearables,” said senior author David Gracias.

The platform goes beyond the current coronavirus pandemic, according to Barman. “We can use this for broad testing against different viruses, for instance, to differentiate between SARS-CoV-2 and H1N1, and even variants. This is a major issue that can’t be readily addressed by current rapid tests.”

The team continues to develop and test the technology and is pursuing a patent and potential license and commercialization opportunities.

A Rapid Graphene Sensor Platform for the Detection of Viruses in a Pinprick

Scientists at Swansea University, Biovici Ltd and the National Physical Laboratory have developed a method to detect viruses in very small volumes.

The work, published in Advanced NanoBiomed Research ("A Rapid Graphene Sensor Platform for the Detection of Viral Proteins in Low Volume Samples"), follows a successful Innovate UK project developing graphene for use in biosensors – devices that can detect tiny levels of disease markers.

For many parts of the world that do not have access to high-tech labs found in hospitals, detecting viruses such as hepatitis C (HCV) – could save millions of preventable deaths worldwide. In addition, biosensors such as this could be used at the point-of-care – opening effective healthcare in difficult-to-reach settings.

What makes the detection of viruses in such small volumes possible is the use of a material called graphene. Graphene is extremely thin - only one atom thick - making it very sensitive to anything that attaches to it. By carefully controlling its surface, scientists at Swansea University were able to make the surface of graphene sensitive to the HCV virus. These measurements were done with graphene specialists at the National Physical Laboratory.

In the future, it is hoped that multiple biosensors can be developed onto a single chip – this could be used to detect different types of dangerous viruses or disease markers from a single measurement.

Ffion Walters, Innovation Technologist at Swansea University’s Healthcare Technology Centre said: “Highly sensitive and simplistic sensors have never been more in demand with regards point-of-care applications. This collaborative project has allowed us to realise proof-of-concept real-time sensors for HCV, which could be especially beneficial in resource-limited settings or for difficult-to-reach populations.”

Professor Owen Guy, Head of Chemistry at Swansea University, said: “At Swansea University, we have now developed graphene-based biosensors for both Hepatitis B and C. This is a major step forward to a future single point of care test”

Dr Olga Kazakova, NPL Fellow Quantum Materials & Sensors added: “NPL was delighted to be part of this multidisciplinary team. Participation in this project allowed us to further develop our metrological validation facilities and apply them to the characterisation of graphene biosensors and aid in solving an important challenge in the health sector.”

Source: Swansea University

PRESS RELEASE: Cepheid Receives Emergency Use Authorization for Xpert® Xpress CoV-2 plus

Cepheid announced it has received Emergency Use Authorization (EUA) from the U.S. Food & Drug Administration (FDA) for Xpert® Xpress CoV-2 plus, a rapid molecular diagnostic test for qualitative detection of the virus that causes COVID-19.

Viruses constantly change through mutation and these mutations can give rise to new variants with unique characteristics. Multiple variants of the virus that cause COVID-19 have been documented globally during the pandemic. Cepheid is proactively addressing this increasing genetic diversity by enhancing gene coverage. The new plus version of the test incorporates a 3rd conserved genetic target for SARS-CoV-2 detection to meet the challenge of future viral mutations and optimizes nucleocapsid gene probes to enable consistent virus detection.

Xpert Xpress CoV-2 plus joins Xpert® Xpress CoV-2/Flu/RSV plus and others in Cepheid's growing portfolio of PCRplus respiratory tests that deliver rapid, accurate, and actionable respiratory results. Xpert Xpress CoV-2/Flu/RSV plus continues to be the most appropriate product for when multiple viruses that cause influenza-like illnesses are circulating. Xpert Xpress CoV2 plus is authorized to be used on any individuals, including for screening those without symptoms or reasons to suspect COVID-19.(1)

Xpert Xpress CoV-2 plus is designed for use on any of Cepheid's over 40,000 GeneXpert® systems placed worldwide. The test can provide rapid on-demand detection of SARS-CoV-2 in as soon as 20 minutes for positive results.(2)  

"From the beginning of the pandemic, we have been keenly focused on staying ahead of SARS-CoV-2 genetic drift and have designed our tests in anticipation of current and potential future variants." said David Persing, M.D., Ph.D., EVP, and Chief Scientific Officer. "The high sensitivity of this test is now especially important for recently announced Test-to-Treat initiatives, for which early detection is important for achieving the best clinical outcomes of antiviral therapies."

Xpert Xpress CoV-2 plus is expected to begin shipping to US customers in May.

1.  PPA and NPA for asymptomatic specimens were calculated using anterior nasal swab specimens.

2.  With early assay termination for positives only; reporting of negatives in approximately 30 minutes.

Tuesday, April 19, 2022

FREDsense, Ginkgo Bioworks Partner to Make Water Quality Biosensors

FREDsense Technologies Corp, a water quality platform company, and Ginkgo Bioworks, a synthetic cellular biology company, today announced a partnership to build biosensors for water quality monitoring and detection.

Through this partnership, Ginkgo seeks to build four distinct microbial strain biosensors, compatible with FREDsense's field-ready hardware for remote water quality monitoring applications.

Water quality has become a growing environmental and public health concern, increasing the demand for scalable monitoring and testing systems. With conventional water quality tests, transporting samples to labs for chemical analysis can lead to lengthy delays in reporting. Some companies, like FREDsense, work to offer portable solutions that allow for rapid feedback without the need for external lab equipment.

"Water is our most critical resource, and we now have the technology to detect in real-time many of the threats or contaminants that can impact the water that our environments and communities depend on," says David Lloyd, CEO of FREDsense. "Through this partnership with Ginkgo, we aim to introduce rapid, simple, and accurate testing to deliver water quality monitoring systems to those that most need it. We believe that synthetic biology is the key to solving some of the biggest challenges facing the water industry globally and are very excited to partner with Ginkgo on this vision."

The biosensors in development by Ginkgo aim to enable real-time field detection of harmful molecules, and may be used to generate solutions for groundwater and industrial water management systems.

"Partnering with FREDsense is an exciting opportunity to apply Ginkgo's strain development capabilities to powerful biosensor technology for an important application," said Jason Kelly, CEO of Ginkgo Bioworks. "Protecting our water sources is a mission critical initiative: life on this planet as we know it depends on it. We're eager to work toward enhancing the capabilities of FREDsense's platform to monitor for harmful contaminants in water."