Industry News

Our news page will keep you informed of press releases and news articles on rapid and alternative microbiological method technologies and updates from technology suppliers.

Please click here to submit your news.

GNA Biosolutions Releases Laser PCR Platform for Research Use in Europe

German firm GNA Biosolutions last week announced the commercial launch of its Pharos V8 platform, a real-time PCR system for research use in Europe.

The device uses GNA's laser PCR technology, which operates on the same principles as standard nucleic acid amplification but instead uses nanomaterials to control temperature cycles at the nanometer scale instead of heating and cooling down the entire solution.

"We add nanoparticles to the mastermix of the reaction … for instantaneous heating and cooling," said Lars Ullerich, managing director of business development at the company. "We get to real-time PCR results within 10 minutes, from start to finish of the amplification and detection mechanism."

According to Ullerich, the technology accelerates the PCR reaction times by a factor of ten and opens the door for application in multiple time-sensitive settings. Researchers can process small and large volumes of solution, up to 100 microliters, on the system due to the nanoparticles. Ullerich described the Pharos V8 platform as a semi-quantitative device that has built-in real time detection. He also noted that the platform is currently not able to perform real-time PCR relative to a standard that would allow researchers to determine copy number, hence the "semi-quantitative" label.

Several academic groups and companies are attempting to push the 10-minute boundary for real-time PCR. For instance, a group headed by Carl Wittwer, a professor of pathology at the University of Utah School of Medicine, has pushed the limits of PCR detection using an intercalating dye to determine extension rates, measured as nucleotides per second per molecule of polymerase. Wittwer's team developed the technique to work on a real-time PCR platform, and has recorded producing efficient and specific DNA amplification in 15 to 60 seconds. But that work was only theoretical and has not been implemented in a commercial platform.

The Pharos V8 platform uses 8-strip PCR tubes instead of cartridges, allowing researchers to adapt their existing real-time assays to the company's mastermix for a small fee. GNA said that the device is amenable to samples prepared by any number of conventional methods.

With a team of 30 employees, GNA designed the Pharos V8 to be an open platform for customers who need "to provide a  very quick answer and who need to use this answer to release material". GNA CEO Frank Krieg-Schneider envisions the test being used for "anything from food testing, to quality control, to human [in vitro diagnostics]."

Because the Pharos V8 platform and reagents are not IVD/CE marked, GNA emphasized that the system is meant for lab-developed tests that can be accelerated by a factor of 10. GNA will provide generic kits so that customers, which could include labs in Europe and the US, can design their own tests to run on the instrument. This week the company launched the Pharos V8 Universal Assay Kit for DNA amplification alongside its platform.

"It is important to mention that use of the instrument for 'near' diagnostic purposes is meant for Europe," Krieg-Schneider explained. "At this point, for the US market, the instrument will be for research purposes only."

GNA has also developed industrial partnerships over the past few years, but did not disclose them at this time. Ullerich said that the firm offers additional services including nucleic acid detection, modular instrument components, and custom molecular assays.

"We are interested in infectious disease testing because we think it's very time-sensitive, and that's where speed matters a lot, and we're developing assays for quickly detecting hospital-acquired diseases," Krieg-Schneider added.

GNA's Pharos V8 device costs an end user €25,000 ($29,498) with a cost of €1.50 for each Laser PCR reaction running on the universal assay accompanying the platform. According to Ullerich, the Pharos V8 is currently available for sale only in the EU for research use, which "does not impede diagnostic laboratories to employ the device for their lab-developed tests."At this time, the firm has not finalized its distribution strategy for the EU or beyond.

GNA previously developed the Pharos 400 two years ago, a prototype device used as a part of a research project funded by IMI2, a public-private partnership between the EU's Horizon 2020 research and European Federation of Pharmaceutical Industries and Associations. Called FiloDiag, the GNA-led research team is developing real-time laser PCR and RNA-based assays to detect Ebola infection. Ullerich explained that the test is in final stages of research, which will "ultimately lead to a point-of-care system that will be something like a CLIA-waived instrument, [as] it will come with a cartridge that has a dedicated test on board."

GNA has also received funding from the German Federal Ministry of Education and Research regarding research on the rapid detection of methicillin-resistant Staphylococcus aureus and multidrug resistant gram-negative bacteria in hospitals.

GNA plans to launch a DNA amplification kit during Q1 2018. In addition, it plans to launch a one-step RT-PCR kit, which will enable users to run RNA amplification.


  1. Hello,
    thanks for reporting!
    I can not get the point what is new to this.
    Is the soultion being heated up faster by darkening the colour of the solution?

    Some colouring chemical is being mixed into the Titer.So it absorbs the Laser light and is being heated faster the if it was being heated up jusdt by heating it by convection in a hot glass titer (like a pot on an oven)= normal heating method.

    Thus the solution is being heated faster by Laser then by a heating plate.

    Would I get the point?
    Thanks in advance for telling.
    Alex, Dipl.-Ing. (Uni)
    82131 Gauting

  2. Alex, it appears the heating and cooling phases for PCR are being better controlled and more focused, resulting in faster changes for the amplification process. I suggest visiting the GNA Biosolutions website for additional information and contacts to ask your questions to their scientists.

Previous Post Next Post

Contact Form