The technology employs a paper/polymer hybrid microfluidic biochip integrated with loop-mediated isothermal amplification (LAMP) method for the rapid and accurate detection of B. pertussis. This microfluidic approach was validated by testing 100 de-identified remnant clinical nasopharyngeal swabs and aspirates, which were confirmed to be either positive or negative for B. pertussis by a validated real-time PCR assay at the Children's Hospital Los Angeles.
Findings
The instrument-free detection results could be successfully read by the naked eye within 45 min with a limit of detection (LOD) of 5 DNA copies per well. Our optimized bacterial lysis protocol allowed the direct testing of clinical samples without any complicated sample processing/preparation (i.e. DNA extraction) or the use of any equipment (e.g. centrifuges). The validation of the microfluidic approach was accomplished by testing 100 clinical samples. High sensitivity (100%) and specificity (96%) with respect to real-time PCR were achieved.
Interpretation
This microfluidic biochip shows great potential for point-of-care disease diagnosis in various venues including schools and physician's offices, especially in low-resource settings in developing nations.
The full study (and a link to the publication in PDF format) has been published in the online version of The Lancet.